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The classic Michaelis-Menten equation describes the catalytic activities for ensembles of enzyme molecules
very well. But recent single-molecule experiments showed that the waiting time distribution and other prop-
erties of single enzyme molecules were not consistent with the prediction based on the ensemble viewpoint.
They have contributed to the slow conformational changes of a single enzyme in the catalytic processes. In this
work, we study the general dynamics of single enzymes in the presence of dynamic disorder. We find that,
within the time separation regimes, i.e., the slow reaction and nondiffusion limits, the Michaelis-Menten
equation holds exactly. In particular, by employing the decoupling approximation we demonstrate analytically
that the classic Michaelis-Menten equation is still an excellent approximation in the presence of general
dynamic disorder.
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The Michaelis-Menten �MM� mechanism �1� is widely
used to understand the catalytic activities of various en-
zymes. According to this mechanism, a substrate S binds
reversibly with an enzyme E to form a complex ES. ES then
undergoes unimolecular decomposition to form a product P,
and E is regenerated for the next cycle,

E + S�
k−1

k1

ES→
k2

E0 + P, E0→
k0

E . �1�

The MM equation �1� describes the rate v of product forma-
tion on substrate concentration �S� as

v =
vmax�S�

�S� + KM
�2�

where vmax=k2�E�T is the maximum generation velocity,
�E�T= �E�+ �ES� is the total enzyme concentration, and KM

= �k−1+k2� /k1 is the Michaelis constant. Although it has been
almost 100 years since the proposal of the MM mechanism
and equation, they are widely accepted and remain pillars of
enzymology.

Recent advances in single-molecule techniques have re-
newed people’s interest in the classic MM mechanism. The
single-molecule fluorescence studies �2–7� found that cata-
lytic rates of many enzymes were fluctuating with time. A
natural question is why the MM equation works well despite
the broad distributions and dynamic fluctuations of the cata-
lytic rate. Recently, Xie et al. studied this issue by a single-
molecule experiment �8� and theory �9�. In the experiment,
they found that the reciprocal of the mean turnover time �the
first moment of the waiting time distribution� for an enzy-
matic reaction to occur, �t�−1=v / �E�T, followed the MM
equation at any substrate concentrations. Moreover, the wait-
ing time distribution exhibited highly stretched multiexpo-
nential decays at high substrate concentrations and monoex-
ponential decays at low substrate concentrations. In contrast,
the distributions predicted by the classic MM mechanism at

the single molecule level always exhibit monoexponential
decays �8�. Because any observational quantities of enzymes
in principle could be constructed by the waiting time distri-
bution, a correct understanding of the distribution is essen-
tial. Xie et al. �9� attributed the nonexponential decay of the
distributions to dynamic disorder of the rate constants in Eq.
�1� caused by transitions among different enzyme conforma-
tions. They proved theoretically that when the transition rates
among the ES conformations are far slower than the catalytic
rate k2 �the quasistatic disorder�, the classic MM equation
holds even if the waiting time distribution is no longer mo-
noexponential decays at high substrate concentrations. The
following problem is whether the MM equation still holds in
the presence of general dynamic disorder, where the confor-
mational transitions might be at comparable time scales to
those of catalysis �or the time scale overlapping regime� �10�.
Xie et al. �9� attempted to give an answer. But their work
ended in the two-state model due to mathematic difficulties.
Very recently, Gopich and Szabo �11� studied the same prob-
lem. But they assumed the single enzyme molecule to be in
steady state. In this work, we prove that within the time
separation regime, i.e., the slow reaction and nondiffusion
limits, where the conformational diffusions of single enzyme
molecules are far faster and slower than the catalytic reac-
tions in Eq. �1�, respectively, the MM equation holds
exactly. In particular, the classic MM equation is still an
excellent approximation even within the time scale overlap-
ping regime.

Our model involves a single continuous conformational
coordinate x for each enzyme state �12,13�. Then the confor-
mational probability distribution for each enzyme state to
have a particular value of x at time t, PI�x , t�, I=E, ES, or E0

in Eq. �1�, can be obtained by solving three coupled
diffusion-reaction equations with the potentials VI�x� and the
reaction terms ki�x� �14�,

�

�t
PE�x,t� = �LE − k1S�x��PE + k−1�x�PES,

�

�t
PES�x,t� = �LES − k3�x��PES + k1S�x�PE,

*Email address: liufei@tsinghua.edu.cn

PHYSICAL REVIEW E 74, 030902�R� �2006�

RAPID COMMUNICATIONS

1539-3755/2006/74�3�/030902�4� ©2006 The American Physical Society030902-1

http://dx.doi.org/10.1103/PhysRevE.74.030902


�

�t
PE0�x,t� = LE0PE0 + k2�x�PES, �3�

where the Fokker-Planck operators are

LI = DI
�

�x
e−�VI�x� �

�x
e�VI�x�. �4�

DI are diffusion coefficients, �−1=kBT, kB is Boltzmann’s
constant, and T is the absolute temperature. We define
k3�x�=k−1�x�+k2�x� and k1S�x�=k1�x��S� for convenience.
The initial conditions are PES�x ,0�=0, PE0�x ,0�=0, and
PE�x ,0� is the thermal equilibrium distribution PE

eq within the
potential VE�x�. The rates k1�x� and k−1�x� may obey the
principle of detailed balance locally �15�. In a single mol-
ecule turnover experiment, the observation is the probability
distribution of the waiting time for an enzymatic reaction to
occur, f�t�, which is defined as f�t�=�k2�x�PES�x , t�dx �9,13�.
We first study the solutions to Eq. �3� within the time scale
separation regime.

THE SLOW REACTION LIMIT

Under this limit, the processes of reactions in Eq. �1� are
very slow compared to processes of the enzyme conforma-
tional diffusions. The thermal equilibrium distribution of the
conformations for each enzyme state is hence always main-
tained during the courses of reactions. The solutions to Eq.
�3� can then be written as

PI�x,t� = PI
eq�x��I�t� , �5�

where PI
eq�x��exp�−�VI�x��. Substituting them into Eq. �3�

and considering that

LIPI
eq�x� = 0, �6�

we get

f�t� = �ES�t� � k2�x�PES
eq �x�dx

=
kEeq

1S kESeq

2

2Aeq
�e�Beq+Aeq�t − e�Beq−Aeq�t� , �7�

where

Aeq = ��kESeq

3 + kEeq

1S �2/4 − kEeq

1S kESeq

2 �1/2,

Beq = − �kESeq

3 + kEeq

1S �/2,

and kIeq

i =�PI
eq�x�ki�x�dx. Hence the reciprocal of the mean

turnover time is

1

�t�
=

kESeq

2 �S�

�S� + Meq
, �8�

where Meq= �kESeq

−1 +kESeq

2 � /kEeq

1 . We see that Eqs. �7� and �8�
are almost the same as those obtained from the classic MM
mechanism in the absence of dynamic disorder at the single
molecule level �9�. The only difference is that the previous

rate constants are replaced by the mean values of ki�x� on the
thermal equilibrium distribution PI

eq�x�. We could not distin-
guish the two cases, because there is no difference between a
constant and a mean value of a function on some distribu-
tion. But if we adjust the diffusion coefficients DI to zero by
enhancing solvent viscosity or lowering temperature, which
is termed the nondiffusion limit below, the difference be-
tween the presence and absence of dynamic disorder will
exhibit.

THE NONDIFFUSION LIMIT

In this limit, the reactions in Eq. �1� proceed so rapidly
that the distribution of x at the initial values is not restored
by conformational diffusions in the course of reactions.
Hence we neglect the diffusion terms in Eq. �3�. The follow-
ing calculations are simple and we immediately obtain

f�t� =� PE
eq�x�

k1S�x�k2�x�
2A�x�

	e�B�x�+A�x��t − e�B�x�−A�x��t
dx

�9�

and

1

�t�
=

�nd�S�
�S� + Mnd

, �10�

where

�nd
−1 =� PE

eq�x�/k2�x�dx ,

Mnd = �nd� PE
eq�x�k3�x�/�k1�x�k2�x��dx ,

where A�x�= 	�k1S�x�+k3�x��2 /4−k1S�x�k2�x�
1/2 and B�x�
=−�k3�x�+k1S�x�� /2.

We note that the expressions of Eqs. �9� and �10� are very
similar to those �Eqs. �29� and �31�� derived by Xie et al. �9�
under the quasistatic disorder. It is not unexpected because
our nondiffusion limit includes their condition. Two new fea-
tures are revealed here. One is that, in addition to k2, the
other rates are allowed to be fluctuating in time. The other
and maybe more interesting is that the weight function w�k2�
introduced by Xie et al. has a “microscopic” physical inter-
pretation. In order to better understand this point, we rewrite
Eq. �9� in terms of k2 instead of x. According to the real
experimental observations �8� that both k1�x� and k−1�x� are
independent of the conformational coordinate, we have

f�t� = �
0

�

w�k2�
k1k2�S�

2A
�e�B+A�t − e�B−A�t� dk2, �11�

where the “weight” function w�k2� is related to the initial
equilibrium distribution as follows:

w�k2� = PE
eq�x−1�k2��dx/dk2, �12�

and x−1�k2� is the inverse function of k2�x�. Equation �11�
appears to be the continuum version of Eq. �31� of Xie et al.
�9�. We use the new microscopic interpretation to fit the
single-molecule experiment �8� by assuming that the poten-
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tial VE has a harmonic form with spring constant k, i.e.,

PE�x� = �2��2�−1/2exp�− x2/2�2� , �13�

where �2=kBT /k, and k2�x�=a exp�−bx� �13�. The nondiffu-
sion limit now would be reasonable if ki�k�DI. Figure 1
shows the fitting parameters and curves. We see that our
calculations are satisfactory. Interestingly, although the de-
pendence of k2 on the conformational coordinate and the
harmonic potential VE are empirical, the function 	�k2� in
Eq. �12� always has only one maximum and is skewed to-
ward larger values. It might partially explain why gamma
distribution of the catalytic rate �9� can fit the data well; see
also the inset in Fig. 1. Because Eq. �11� is the same as
previous results �9�, we are not ready to further discuss its
general behavior and implications, e.g., the decay depen-
dence on the substrate concentration, higher moments of f�t�,
etc. In the following, we focus on the general solutions to the
coupled diffusion-reaction equations.

THE GENERAL SOLUTION

Substituting �16–18�

PI�x,t� = gI�x�QI�x,t� �14�

into Eq. �3�, where gI�x�= �PI
eq�x��1/2, we transform the dif-

fusion reaction equations into an adjoint form,

�

�t
QE�x,t� = − �ĤE + k1S�x��QE + k−1� �x�QES,

�

�t
QES�x,t� = − �ĤES + k3�x��QES + k1S� �x�QE,

�

�t
QE0�x,t� = − ĤE0QE0 + k2��x�QES, �15�

where the new functions k−1� �x�, k1S� �x�, and k2��x� are, respec-
tively, defined as

k−1� �x� = k−1�x�gES/gE�x� ,

k1S� �x� = k1S�x�gE/gES�x� ,

k2��x� = k2�x�gES/gE0�x� , �16�

and the Hamiltonian operators are

ĤI = − DI
�2

�x2 +
�DI

2
��

2
�dVI

dx

2

−
d2VI

dx2 � . �17�

We assume that the operators ĤI have discrete eigenfunctions
�n�I �the bound diffusion assumption�, i.e.,

ĤI�n�I = 
In
�n�I, n = 0,1, . . . . �18�

Then gI�x� are just the lowest order eigenfunctions �0�I in the
coordinate representation with zero eigenvalues, 
I0

=0. The
eigenvalues include the diffusion information. For instance,
given the potentials VI to be harmonic, 
In

are proportional to

n�DI. Defining ÔI=s+ ĤI+ki�x�, here i=1S and 3, respec-

tively, correspond to I=E and ES, and ÔE0 =s+ ĤE0, the
Laplace transform of PES�x , t� with the initial conditions, is
written as

QES�x,s� = ÔES
−1k1S�

1

ÔE − k−1� ÔES
−1k1S�

�0�E. �19�

Although these calculations are exact, we cannot say more

about the inverse operator ÔES
−1. In order to obtain an analytic

solution, we employ the decoupled approximation �17,18�

1 � kIeq

j −1�0�II�0�kj . �20�

This is exact when the expectation value of the operator Eq.
�20� is computed in the state �0�I �17�. Using the approxima-
tion repeatedly, we get the analytical form of the Laplace
transform of f�t� as follows:

f�s� =
E�0�k3k1S�0�Ek2

ESeq
/kESeq

3

s2�1 + aES
3 �s���1 + aE

1S�s�� − E�0�k3k1S�0�EES�0�k−1k1S�0�ES/kEeq

1S kESeq

3 , �21�

where

aI
i�s� = kIeq

i −1
I�0�ki�s + ĤI�−1�0�I

= kIeq

i s−1 + kIeq

i −1�
n=1

�

�s + 
In
�−1�I�0�ki�n�I�

2, �22�

and i=1S and 3, respectively, correspond to I=E and ES
again. Because the denominator of Eq. �21� is a higher-order
��2� polynomial of variable s, this waiting time distribution

f�t� has a multiexponential decay behavior. For instance, if
we truncate aI

i�s� to nth order, f�t� is then a sum of 2�n+1�
exponential decay functions. The most remarkable finding is
that, even if f�t� has a complicated mathematic expression,
the reciprocal of its first moment, �t�=−df�s� /ds�s=0, still has
a simple MM-like expression,

1

�t�
=

K�S�
�S� + M

, �23�

where
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M = kESeq

3 /F ,

K = kESeq

3 �kESeq

3 kEeq

1 − ES�0�k1k−1�0�ESE�0�k1k3�0�E/kESeq

3 kEeq

1 �2/

FkESeq

2
E�0�k1k3�0�E,

and

F = �1 + kESeq

3 −1�
n=1

�


ESn

−1 �ES�0�k3�n�ES�2
kEeq

1

+ kEeq

1 −1�
n=1

�


En

−1�E�0�k1�n�E�2kESeq

3 .

Here we separate the substrate concentration �S� from the
rate k1S�x�. Under the two limiting cases, Eq. �22� is approxi-
mated to be �18�

aI
i�s� � kI

i
eqs

−1 �slow reaction limit� ,

aI
i�s� � ki�x�s−1 �nondiffusion limit� . �24�

Substituting them into Eq. �21� and making the Laplace
transformation, we obtain the same Eqs. �7� and �9�. The
decoupling approximation Eq. �20� has been proved to be a
good approximation �17,18�, hence the classic MM equation
is a good approximation under general dynamic disorder.

In this work, we recover the waiting time distribution f�t�
obtained by Xie et al. under the quasistatic disorder, and we
give a microscopic interpretation of the weight function in-
troduced by them. Compared to their complicated algebra
calculations and a continuum approximation involved, how-
ever, our approach is very simple and direct. We must point
out that the current calculations except for experimental fit-
ting are independent of specific conformational diffusion dy-
namics. We also investigate another case within the time
scale separation regime, namely the slow reaction limit. Al-
though under this limit the waiting time distribution and MM
equation are almost the same as those predicted by the clas-
sic MM mechanism in the absence of dynamic disorder, it in
turn reminds us that dynamic disorder might be behind the
conventional enzyme dynamics. Finally, we prove that under
the general dynamic disorder, which includes the time scale

overlapping regime, the reciprocal of the mean turnover time
follows the classic MM equation. Although this conclusion is
based on the decoupling approximation, and currently its
physical picture remains elusive to us, it should be meaning-
ful because this approximation has been proved to work well
in various systems. Further numerical tests and analyses
would be needed.
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FIG. 1. �Color online� Waiting time distributions of single
�-galactosidase molecules for four substrate �RGP� concentrations
in a log-linear scale, 10 �M �the cross�, 20 �M �the circle�,
50 �M, �the time� and 100 �M �the square� �8�. The dotted lines
and the dashed lines were calculated by Xie et al. �8�: the former
was from the single molecule MM equation in the absence of dy-
namic disorder, and the latter was from the single molecule MM
equation in the presence of dynamic disorder under the quasistatic
condition, where k2 was a gamma distribution �the dashed line in
the inset�. Our theoretical predictions are the solid lines. The solid
line in the inset is the catalytic rate distribution given by Eq. �12�.
The parameters used here are k1=5
107 M−1 s−1, k−1=18 300 s−1

�8�, a=904 s−1, b=5.0, and �=0.1 �19�.
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